展开全部 +
首页 . 理学 . 天文学 . 恒星

恒星

/star/
条目作者李宗伟

李宗伟

最后更新 2023-03-31
浏览 985
最后更新 2023-03-31
浏览 985
0 意见反馈 条目引用

由自身引力维持,靠内部的核聚变而发光的炽热等离子体组成的球状或类球状天体。

英文名称
star
所属学科
天文学

太阳就是一颗典型的恒星,离地球最近。其次是半人马座比邻星,它与地球的距离为4.22光年。银河系拥有几千亿颗恒星,但在晴朗无月的夜晚,在远离城市的地球表面用肉眼大约可以看到3000多颗恒星。借助于望远镜,可看到几十万乃至几百万颗以上的恒星。恒星并非不动,因为离地球实在太远,不借助特殊工具和特殊方法,很难发现它们在天球上的位置变化,因此古代人把它们称为恒星。

描述恒星物理特性的基本参量有距离、亮度(视星等)、光度(绝对星等)、质量、直径、温度、压力和磁场等。测定恒星距离最基本的方法是三角视差法,先测得地球轨道半长径在恒星处的张角(周年视差),再经过简单的运算,即可求出恒星的距离。这是测定距离最直接的方法。但对大多数恒星说来,这个张角太小,无法测准。所以测定恒星距离常使用一些间接的方法,如分光视差法、星团视差法、统计视差法以及由造父变星的周光关系确定视差等。这些间接的方法都是以三角视差法为基础的。

恒星的亮度常用星等来表示。恒星越亮,星等数值越小。地球上测出的星等称视星等;归算到离地球10秒差距处的星等称绝对星等。使用对不同波段敏感的检测组件所测得的同一恒星的星等,一般是不相等的。最通用的星等系统之一是U(紫外)、B(蓝)、V(黄)三色系统。BV分别接近照相星等和目视星等,两者之差就是常用的色指数。太阳的V=−26.74,绝对目视星等Mv=+4.83,色指数B-V=0.63,U-B=0.12。由色指数可确定色温度。恒星表面的温度一般用有效温度来表示,他等于有相同直径、相同总辐射的绝对黑体的温度。

有关恒星的知识主要来自能揭示其物质成分、表面温度和运动状态的光谱研究。恒星的光谱能量分布与有效温度有关,由此可定出O、B、A、F、G、K、M等光谱型(也可称为温度型)。温度相同的恒星,体积越大,总辐射流量(即光度)越大,绝对星等越小。恒星的光度级可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次称为超巨星、亮巨星、巨星亚巨星主序星(或矮星)、亚矮星白矮星。太阳的光谱型为G2Ⅴ,颜色偏黄,有效温度约5770K。A0Ⅴ型星的色指数平均为零,温度约10000K。恒星大气的有效温度由早O型的几万度到晚M型的几千度,差别很大。见恒星光谱

恒星的真直径可根据恒星的视直径(角直径)和距离计算出来。常用的干涉仪或月掩星方法可测出小到0.001″的恒星的角直径,更小的恒星不容易测准,加上测量距离的误差,所以恒星的真直径可靠的不多。根据食双星兼分光双星的轨道资料,也可得出某些恒星直径。有些恒星也可根据绝对星等和有效温度来推算其真直径。用各种方法求出的不同恒星的直径,有的小到几千米,有的大到109千米以上。见恒星直径

多数恒星存在于双星系统中。天文学家根据某些特殊的双星系统能测出恒星的质量。经过多年的观测,又确定了质光关系。一般恒星质量能根据质光关系进行估算。总的说来,各种不同类型恒星模型代表的质量,与能够通过现实恒星精确测量的对应质量是符合的,这可确信建立的模型的正确性。已测出的恒星质量大多介于太阳质量的百分之几到120倍之间,但大多数恒星的质量在0.1~10个太阳质量之间。恒星的密度可根据直径和质量求出,密度的量级大约介于10−9克/厘米3(红超巨星)到1013~1016克/厘米3(中子星)之间。

恒星表面的大气压和电子压可通过光谱分析来确定。中性元素与电离元素谱线的强度比,不仅同温度和元素的丰度有关,也同电子压力密切相关。电子压与气体压之间存在着固定的关系,二者都取决于恒星表面的重力加速度,因而同恒星的光度也有密切的关系。见恒星大气理论

根据恒星光谱中谱线的塞曼分裂(见塞曼效应)或一定波段内连续谱的圆偏振情况,可测定恒星的磁场。太阳表面的普遍磁场很弱,仅约1~2高斯,有些恒星的磁场则很强,达数万高斯。白矮星和中子星具有更强的磁场。见恒星磁场

与在地面实验室进行光谱分析一样,对恒星的光谱也可进行分析,借以确定恒星大气中形成各种谱线的元素的含量。多年来的实测结果表明,正常恒星大气的化学组成与太阳大气差不多。按质量计算,氢最多,氦次之,其余按含量依次大致是氧、碳、氮、氖、硅、镁、铁、硫等。但也有一部分恒星大气的化学组成与太阳大气不同,如沃尔夫-拉叶星,就有含碳丰富和含氮丰富之分(即有碳序和氮序之分)。金属线星和A型特殊星中,若干金属元素和超铀元素的谱线显得特别强。理论分析表明,演化过程中恒星内部的化学组成会随着热核反应过程的改变而逐渐改变,重元素的含量会越来越多。见恒星化学组成

观测发现,有些恒星的光度、光谱和磁场等物理特性都随时间发生周期的、半规则的或无规则的变化。这种恒星称为变星。变星分为两大类:一类是由于几个天体间的几何位置发生变化而造成的几何变星;另一类是由于恒星自身内部的物理过程而造成的物理变星。随着观测技术的发展和观测波段的扩大,还发现了射电波段有变化的射电变星和X射线辐射流量变化的X射线变星等。

最为熟悉的是两个恒星互相绕转,因而发生变光现象的食变星(即食双星)。它们分为大陵五型、天琴座β(渐台二)型和大熊座W型三种。几何变星中还包括椭球变星(因自身为椭球形,亮度的变化是由于自转时观测者所见发光面积的变化而造成的)。

按变光的物理机制,主要分为脉动变星和爆发变星两类。

变光原因是恒星在经过漫长的主星序阶段以后(见赫罗图),自身的大气层发生周期性的或非周期性的膨胀和收缩,引起光度的脉动性变化。理论计算表明,脉动周期与恒星密度的平方根成反比,因此那些重复周期为几百乃至几千天的晚型不规则变星、半规则变星和长周期变星都是体积巨大而密度很小的晚型巨星或超巨星。周期约在1~50天的经典造父变星和周期约在0.05~1.5天的天琴座RR型变星(又称星团变星)是两种最重要的脉动变星。观测表明,造父变星的绝对星等随周期增长而变小(这是与密度和周期的关系相适应的),因而可通过精确测定它们的变光周期来推求它们自身以及它们所在的恒星集团的距离,所以造父变星又有宇宙中的“灯塔”或“量天尺”之称。天琴座RR型变星也有量天尺的作用。

还有一些周期短于0.3天的脉动变星(包括盾牌座δ型变星船帆座AI型变星仙王座β型变星等),它们的大气分成若干层,各层都以不同的周期和形式进行脉动,因而其光度变化规律是几种周期变化的叠合,光变曲线的形状变化很大,光变同视向速度曲线的关系也有差异。盾牌座δ型变星和船帆座AI型变星可能是质量较小、密度较大的恒星,仙王座β型变星属于高温巨星或亚巨星一类。

按爆发规模可分为超新星新星矮新星类新星耀星等几类。超新星的亮度会在很短期间内增大数亿倍,然后在数月到一两年内变得非常暗弱。这是恒星演化到晚期的现象。超新星的外部壳层形成一个逐渐扩大而稀薄的星云(超新星遗迹);内部则因极度压缩而形成密度非常大的中子星。最著名的银河超新星是1054年在金牛座发现的“天关客星”。可在该处看到著名的蟹状星云,其中心有一颗周期约33毫秒的脉冲星。

新星在可见光波段的光度在几天内会突然增强大约9个星等或更多,然后在若干年内逐渐恢复原状。1975年8月在天鹅座发现的新星是已知的光变幅度最大的一颗。光谱观测表明,新星的气壳以500~2000千米/秒的速度向外膨胀。一般认为,新星爆发只是壳层的爆发,质量损失仅占总质量的1‰左右,因此不足以使恒星发生质变。有些爆发变星会再次作相当规模的爆发,称为再发新星。

矮新星和类新星变星的光度变化情况与新星类似,但变幅仅为2~6星等,发亮周期也短得多,大多是双星中的子星之一。因而有人认为,这一类变星的爆发是由双星中某种物质的吸积过程引起的。

耀星是一些光度在数秒到数分钟间突然增亮而又很快回复原状的一些很不规则的快变星。它们被认为是一些低温的主序前星。

根据实际观测和光谱分析,恒星大气的基本结构可分为日冕色球层,再向内为光球层。光球大气吸收更内层高温气体的连续辐射而形成吸收线。历史上曾把高层光球大气称作反变层,而把发射连续谱的高温层称作光球。光球这一层相当厚,其中各个分层均有发射和吸收。光球与反变层不能截然分开。太阳型恒星的光球内,有一个平均约1/10半径或更厚的对流层。在上主星序恒星和下主星序恒星的内部,对流层的位置很不相同。能量传输在光球层内以辐射为主,在对流层内则以对流为主。

对于光球和对流层,常利用根据实测的物理特性和化学组成建立模型进行研究。可从流体静力学平衡和热力学平衡的基本假设出发,建立起若干关系式,用以求解星体不同区域的压力、温度、密度、不透明度、产能率和化学组成等。恒星的中心温度可高达数百万度乃至数亿度,在那里进行着不同的产能反应。一般认为恒星是由星云凝缩而成,主星序以前的恒星因温度不够高,不能发生热核反应,只能靠引力收缩来产能。进入主星序之后,中心温度高达700万度以上,开始发生氢聚变成氦的热核反应。这个过程很长,是恒星生命中最长的阶段。氢燃烧完毕后,恒星内部收缩,外部膨胀,演变成表面温度低而体积庞大的红巨星。那些内部温度上升到近亿度的恒星,开始发生其他核反应。这些演化过程中恒星的温度和光度按一定规律变化,从而在赫罗图上形成一定的径迹。最后,一部分恒星发生超新星爆炸,气壳飞走,核心压缩成中子星一类的致密星而趋于“死亡”。见恒星的形成和演化

  • 基彭哈恩 R.千亿颗太阳: 恒星的诞生、演变和衰亡.沈良照,黄润乾,译.长沙:湖南科学技术出版社,1996.

相关条目

阅读历史

    意见反馈

    提 交

    感谢您的反馈

    我们会尽快处理您的反馈!
    您可以进入个人中心的反馈栏目查看反馈详情。
    谢谢!