首页 . 工学 . 航空宇航科学与技术 . 航天 . 航天器 . ﹝航天器飞行原理和基本知识﹞ . ﹝常用航天器轨道﹞

行星探测器轨道

/orbit and trajectory of planetary probe/
条目作者李颐黎

李颐黎

最后更新 2023-10-20
浏览 134
最后更新 2023-10-20
浏览 134
0 意见反馈 条目引用

行星探测器运行过程的质心运动轨迹。

英文名称
orbit and trajectory of planetary probe
所属学科
航空宇航科学与技术

这种轨道的设计属限制性多体问题。

行星与太阳相比质量小得多。只有在足够靠近行星时,也就是说在距离行星一定范围之内时,行星对探测器的引力才是探测器受到的主要的力。将这个范围假设成一个球,球心为行星质心。这个球就称为作用球。作用球是划分飞行阶段的边界。作用球的半径与行星和太阳质量比有关。可用下面公式计算:

式中为作用球半径;为行星到日心距离;为行星质量与太阳的质量之比。

主要行星作用球的半径

行星名称

水星

金星

地球

火星

木星

土星

天王星

海王星

作用球半径/万千米

116293584823547851778987

行星探测器轨道分为行星卫星轨道、人造行星轨道、在行星表面着陆轨道(又称进入轨道)、行星附近飞越轨道和飞离太阳系的轨道。有人将除进入轨道外的其余类型的轨道称为行星探测器轨道。行星探测器轨道依受力情况分为三个阶段:绕地心运动阶段、绕日心运动阶段和绕行星质心运动阶段。在这三个阶段中,行星探测器被认为分别是相对地球、太阳和行星运动的。

在地球的作用球内,探测器先进入停泊轨道。为了脱离地球引力的作用,需要点燃火箭发动机使探测器加速,待速度超过逃逸速度时便会进入过渡轨道,这个过渡轨道是相对地心的双曲线。

探测器到达地球作用球的边界时,是日心轨道的起点。这时须考虑地球相对太阳的运动,把探测器相对地球的逃逸速度换算成相对日心的速度。如果这一速度超过相对日心的逃逸速度,探测器相对日心运动的轨道为双曲线;这一速度小于逃逸速度时,探测器绕日心运动轨道为椭圆。

探测器沿日心轨道在到达行星作用球边界时,需要考虑行星相对太阳的运动,把探测器的日心速度换算成相对行星的速度。这个速度总是超过在这一点的行星逃逸速度,探测器相对行星作双曲线运动。这一双曲线与行星相交时,探测器将与行星相撞,或沿进入轨道降落在行星表面。当双曲线与行星体不相交时,探测器接近行星以后又飞离行星,再次到达作用球边界。这时,相对太阳的速度与进入作用球时的日心速度相比可能增加,也可能减小。速度增加时可以飞向更远的行星;速度减小时可能与距太阳较近的行星相遇。对于要成为行星卫星或成为卫星后再到达行星表面的飞行,在预定的高度上利用火箭发动机进行减速制动,探测器即进入围绕行星的椭圆轨道,成为行星的卫星。从行星卫星轨道向行星表面着陆还须再次减速。对于要返回地球的探测器,还要进行变轨操纵,使探测器进入返回轨道

轨道计算可以分段进行,若将每一阶段的轨道都假设为开普勒轨道,则可以得到粗略的飞行情况。采用轨道摄动的方法可以得到各阶段的精确轨道。但在实际应用中,这些轨道的精确计算都采用数值方法连续计算。

相关条目

阅读历史

    意见反馈

    提 交

    感谢您的反馈

    我们会尽快处理您的反馈!
    您可以进入个人中心的反馈栏目查看反馈详情。
    谢谢!