无线电波在电离层中传播的规律及其应用的研究,早期着重于电波在电离层F2层电子密度峰值以下区域的传播问题,人造卫星上天以后,扩展到穿越整个电离层区域的传播规律问题。
电离层无线电波传播
无线电波在电离层中的传播。
- 英文名称
- radio wave propagation in the ionosphere
- 所属学科
- 地球物理学
电离层由自由电子、正离子、负离子、中性分子和原子组成,是部分电离的等离子体介质。带电粒子的存在影响无线电波的传播,其机制是带电粒子在外加电磁场的作用下随之振动,从而产生二次辐射,同原来的场矢量相加,总的效果表现为电离层对电波的折射指数小于1。由于自由电子的质量远小于离子的质量,一般电子的作用是主要的,只要考虑电子就够了。但在电波频率较低而接近于离子的等离子体频率时,应该考虑离子的影响。由于地磁场的存在,带电粒子也受它的影响,所以电离层又是各向异性的。对于电离层电波传播,介质的折射指数是一个最根本的参数。磁离子理论表达的折射指数的公式称为阿普尔顿-哈特里公式。折射指数是电离层电子密度和电波频率的函数,所以又称为色散公式,而电离层则是一种色散介质。对于短波和波长更短的电波传播问题,可以采用近似的射线理论,对长波和超长波则一般需要采用波动理论,有时可将地面和电离层底部之间看作一个同心球形波导。
电离层的折射指数主要取决于电子密度和电波频率,电子密度愈大或电波频率愈低,折射指数愈小。因为电离层的折射指数小于1,电波在电离层中受到向下的折射,在垂直投射的情况下,折射指数等于零时,电波不能传播,产生“反射”。在一定值的电子密度情况下,使折射指数为零的频率称为电波的临界频率,在地磁场的影响可以忽略时,这一频率等于电子的等离子体频率。电离层的电子密度随高度的变化具有分层结构,因此从地面向上传播的电波受到折射后传播路径逐步弯曲,最后转向地面,从而使地面上的远距离传播成为可能。较高频率的电波,穿透电离层的程度也较深,受折射影响偏离直线传播的程度则较小。电波频率超过某一数值时将穿透整个电离层而不被反射。在垂直投射时,对应这一频率的值就是电离层最大电子密度处的临界频率。在斜投射的情况下,也有一个大于上述垂直投射时临界频率的临界值,称为最高可用频率,用MUF表示,只有当使用的电波频率低于它时,电波才能返回地面。显然MUF与电波的投射角度有关,仰角愈小,MUF愈大,传播的距离也愈远。
电离层对电波有衰减作用,称为电离层的吸收,主要是由电子与大气的分子或原子的碰撞所引起,所以吸收主要发生在低电离层内。同时,在电波被电离层反射的区域,由于那里能量的传播速度较慢,经受吸收的时间较长,遭受的吸收也不能忽视。这一区域的吸收常被称为偏离区吸收。相对地在电波路径弯曲不大的那部分引起的吸收称为非偏离区吸收。电离层对电波的吸收与频率的平方成反比,由于非偏离区吸收是主要的,所以在短波通信中多采用较高的频率或进行夜间通信。对于一定的传播电路、一定的信号形式和调制方式、一定的噪声和干扰水平、一定的发射功率和接收机性能,以及一定的通信质量要求,使用的频率有一个下限,称为最低可用频率,用LUF表示。
电离层作为各向异性介质,在其中传播的无线电波可以分解为两个特征波,即寻常波和非常波。它们具有不同的相速和传播路径,一般地说,它们是椭圆偏振的。当传播方向同地磁场的方向平行时,它们成为圆偏振;当频率远高于电子的磁旋频率时,只要传播方向不正好同地磁场垂直,特征波的偏振近似地是圆偏振。两个圆偏振合成为一个线偏振波,但由于电离层结构特征的变化,合成波的电场强度矢量的方向缓慢地旋转,这种偏振面的旋转称为法拉第旋转。通过测量法拉第旋转速度,可以计算出电离层中沿传播路径上单位截面的柱体内的总电子含量。
如果传播路径的两端有相对运动,而且此相对速度沿传播路径的分量不等于零,则接收到的电波频率不同于发射的频率,这一效应称为多普勒频移。如果路径缩短,频移是正的,反之是负的。无线电波通过电离层传播时,频移量的变化中有一部分来自电离层的贡献,频移量与频率有关。如果利用两个频率,则可消去相对速度的贡献而得到电离层积分电子密度数据。这就是差分多普勒法。
电离层无线电波传播有长波和超长波传播,中波传播,短波传播以及超短波和微波传播。电离层电波传播和电离层探测有着密切的联系。电波法探测是开展电离层研究的重要手段。无线电波传播和电离层物理虽然都是比较成熟的学科领域,但是电离层中仍有一些现象和过程没有得到满意的解释,还需要进行深入的探测研究。