后验概率分布就是未知量作为随机变量的概率分布,并且是在基于实验或者调查所获得的信息上的条件分布。后验的意思是,考虑相关事件已经被检视并且能够得到一些信息。
后验概率是关于参数在给定的数据样本
下的概率,即
;似然函数是在给定参数下的数据样本的概率分布,即
;先验概率为主观上的经验估计,即
,不依赖于数据样本
。基于贝叶斯定理,三者之间的关系可以表示为:
在应用贝叶斯理论中,为了使计算后验概率方便,有时候会选择共轭先验。如果后验概率和先验概率是同一族的,则认为它们是共轭分布。如果后验概率分布与先验概率分布
属于同类,则先验分布与后验分布被称为共轭分布。先验分布被称为似然函数的共轭先验。比如,高斯分布家族在高斯似然函数下与其自身共轭。具体地说,就是给定贝叶斯公式假定似然函数
是已知的,问题就是选取什么样的先验概率分布
会让后验概率分布
与先验概率分布
具有相同的数学形式。共轭先验的好处主要在于代数上的方便性,可以直接给出后验分布的封闭形式,否则的话只能数值计算。所有指数家族的分布都有共轭先验。